
Exercises 5:

First Hardware Exercise: The LED
Goal:
Now that we know how to program the Raspberry Pi we will start to setup our first electronic
circuits, albeit extremely simple, and control them through the Raspberry Pi.

All circuits will be built on a bread board which is connected to the Rpi through a “cobbler” which
supplies it with power and which gives access to the Rpis I/O pins. The significance of the pins is
printed on the cobbler.

A word of warning: The Rpi can provide a maximum of 60 mA of current. Drawing more than that
may damage the processor chip and thus kill our poor little Raspberry. Therefore only wire up
your circuit with the Rpi switched off! and triple control your wiring, before switching it on.
When unsure, please ask a supervisor! If the Raspberry Pi was on, then shut it down orderly
before switching off.

Exercise 1: Testing the LED
As said above, we have to limit the current flowing through the LED, which is done with a 330Ω
resistor as shown in the circuit diagram:

The long lead on the LED goes to Vcc (via the resistor) the short one to ground.

Under the assumption that the resistance of the LED can be neglected compared to the 330 Ω
current limiting resistor and Vcc = 3.3V, what is the current flowing through the LED?

Exercise 2: Connect the LED to the GPIO pin
Now that we know the LED works fine, we disconnect (with Raspberry Pi switched off!) the LED
from Vcc and connect it to GPIO pin 0 instead. Please check the pin correspondence table between
GPIO numbering and physical numbering on the CPU chip.

We have installed the wiringpi package for you, which contains libraries for access to the GPIO pins
but also to the SPI and I2C serial interfaces. This package contains in addition to the library and
include files a new command gpio allowing us to talk to a gpio pin. We will have to define this pin
to be output and then write 0 or 1 to it .

Have to look at the gpio man page to figure out how to do this.

Exercise 3: Shell script to make the LED blink
Once you are able to switch a LED on and off, write a shell script to make it permanently blink.

Exercise 4: Write a C program to make the LED blink
In order to translate your blinking program into C you will have to include <wiringPi.h>. Then you
can call wiringPiSetup () to initialize the library. Finally use pinMode and digitalWrite to tel the
library you want to use the pin as output pin and write to it. Check the wiringpi API documentation
for the parameters of these calls. When building the program you have to link the wiringPi library to
your program (-lwiringPi). The wiringPi include files and the library are stored in /usr/include
and /usr/lib respectively.

Write a Makefile to build your project. Test it to make sure it works as expected.

Exercise 5: Make the blink program exit gracefully
Include a signal handler in your code which handles the SIGINT signal. When called it will switch
off the LED before finally exiting the blink program.

Exercise 6: Make your LED blink SOS
Write a C program that makes the LED blink an SOS. Write a subroutine pulse (int pulseLength)
that switches the LED on for pulsLength ms and then off again for pulseLength ms. Use this routine
to implement the SOS. Wait for 1 s between each SOS sequence.

Exercise 7: Traffic Light Simulation
Implement the traffic light simulator on the Raspberry Pi using 6 LEDs: 2 red, 2 yellow, 2 green to
simulate the 2 traffic lights. Look up the problem description in exercise 3.

	Goal:
	Exercise 1: Testing the LED
	Exercise 2: Connect the LED to the GPIO pin
	Exercise 3: Shell script to make the LED blink
	Exercise 4: Write a C program to make the LED blink
	Exercise 5: Make the blink program exit gracefully
	Exercise 6: Make your LED blink SOS
	Exercise 7: Traffic Light Simulation

